Allergic Bronchopulmonary Aspergillosis: Lessons Learnt from Genetics

Allergic bronchopulmonary aspergillosis (ABPA) is a complex hypersensitivity reaction, most often encountered in patients with bronchial asthma or cystic fibrosis (CF), as a consequence of colonisation of the tracheobronchial tree by Aspergillus fumigatus. It complicates the course of 2% to 32% of patients with bronchial asthma and 1% to 15% of patients with CF. This disorder was first described by Hinson in 1952 from the United Kingdom, whereas the first case was described from India in 1971. The disease presents with varied clinical and radiographic manifestations ranging from an asymptomatic patient with or without pulmonary infiltrates to severe uncontrolled asthma with or without central bronchiectasis. Bronchiectasis may be absent in the early stages of the disease (seropositive ABPA). The major reason of interest in this entity stems from the fact that the condition responds remarkably to glucocorticoid therapy, and early diagnosis and treatment can prevent progression to end-stage lung disease.

In ABPA, the immune responses are heavily skewed towards a Th2 CD4+ T-cell response with interleukin-4 (IL-4), IL-5 and IL-13 secretion with little or no IL-2 or interferon-gamma (IFN-γ) secretion. Aspergillus hypersensitivity can be considered as the first step in the development of ABPA, and ABPA can be conceptualised as an exaggerated form of Aspergillus hypersensitivity. However, only a minority of patients with Aspergillus sensitivity go on to develop the complete clinical picture of ABPA. Why does the immune response in ABPA differ from Aspergillus sensitive asthma patients? It was initially thought that exposure to large concentrations of A. fumigatus cause ABPA as in exposure to garbage dump sites, agricultural conditions, bird droppings, and smoking moldy marijuana. While the exposure to the fungi is universal, ABPA is seen in only a minority of individuals demonstrating that specific host susceptibility factors may be important for the development of the disease. It has been hypothesised that ABPA develops in patients with bronchial asthma and CF who are genetically predisposed. There are references to the relationship between genetic risk factors and ABPA in the published literature (Table 1). The first insight into genetic risk factor for ABPA was made in 1978, when the association between human leukocyte antigen (HLA) alleles and the disorder was studied. No consistent association between the HLA alleles and ABPA was noted. Since then, numerous studies have evaluated genetic predisposition in ABPA and have found association with numerous genetic mutations/polymorphisms. Abnormalities in the CF transmembrane conductance regulator (CFTR) gene, innate immune response and/or the adaptive immune response can predispose to ABPA.

The occurrence of ABPA in CF raises the possibility that mutations in the CFTR gene may be associated with ABPA. A key element in immunopathogenesis of ABPA may be exposure of bronchial lymphoid tissue to high levels of Aspergillus (and their allergens), perhaps because of abnormal mucus properties resulting from the CFTR mutations. In support of this hypothesis, five small studies suggest that subjects with ABPA have a higher carrier rate of CFTR mutations compared to the general population. Genetic polymorphisms in the innate immunity can lead to either persistence of A. fumigatus in the airways or modify the subsequent immune responses. The collectins (surfactant protein [SP]-A, SP-D, mannose binding lectin [MBL]), a family of antimicrobial peptides secreted into the airways; and, toll-like receptors (TLRs), a class of proteins that recognise structurally conserved molecules derived from microbes play an important role in innate immunity. Polymorphisms in the genes encoding these proteins (SP-A, MBL, TLR-9) have been shown to be associated with ABPA. The adaptive immune system is composed of highly specialised processes that eliminate or prevent pathogenic challenges with the key player being T-cells. The polymorphic MHC class II molecules on antigen presenting cells play a critical role in restricting antigen specific T-cell activation, which is important in the induction of immune responses to extrinsic allergens. These events determine the ensuing phenotype of the responding T-cells, the nature of antibodies synthesised and the character of the resulting inflammatory response. Several authors have found association between MHC class II polymorphisms and ABPA (Table 1). The T-cell receptors are another key component involved in T-cell recognition of an allergen, and T-cell receptor usage might play a significant role in the production of allergen specific antibodies. Chauhan et al found that Vβ13 gene was associated with susceptibility to ABPA whereas the Vβ1 gene was associated with resistance. Finally, genetic polymorphisms of the cytokines (or their receptors) involved in adaptive immune response can also predispose to ABPA. Specifically polymorphisms of IL-10, IL-4Ro, and transforming growth factor-beta (TGF-β) genes have been associated with ABPA.
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Disease Population Evaluated</th>
<th>Number of Patients with Disease</th>
<th>Control Population</th>
<th>Genetic Risk Evaluated</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaherty (1978)</td>
<td>ABPA 69</td>
<td>22</td>
<td>HLA alleles</td>
<td>No consistent association with HLA</td>
<td></td>
</tr>
<tr>
<td>Morris (1980)</td>
<td>ABPA 82 asthma</td>
<td>21</td>
<td>HLA alleles</td>
<td>HLA B12 associated with production of IgE antibodies</td>
<td></td>
</tr>
<tr>
<td>Chauhan (1996)</td>
<td>ABPA 53</td>
<td>3</td>
<td>HLA alleles</td>
<td>HLA DR2 and DR5 restriction noted in ABPA. Specific HLA DR2 (DRB11501, DRB11503 and DRB11501) and DR5 alleles (DRB11101, DRB11104 and DRB11202) were prevalent in ABPA vs controls</td>
<td></td>
</tr>
<tr>
<td>Miller (1996)</td>
<td>ABPA 49</td>
<td>11</td>
<td>CFTR mutations</td>
<td>1 patient carried 2 CF (AF508; R347H) and 5 carried 1 CF (4AF508; 1 R117H). Mutations seen in 6/11 ABPA vs 1/53 controls</td>
<td></td>
</tr>
<tr>
<td>Chauhan (1997)</td>
<td>ABPA 39</td>
<td>18</td>
<td>HLA alleles</td>
<td>DR2/DR7 increased in ABPA/allergy/CF vs controls. DR7 association highest in ABPA, DR5 non-significantly increased in ABPA. CFTR mutation (1 R1162X; 1 N1303K, 2 AF508) seen in 4/11 ABPA vs 4% general population</td>
<td></td>
</tr>
<tr>
<td>Aron (1999)</td>
<td>ABPA 16, allergy 98 CF</td>
<td>27</td>
<td>HLA alleles, 31 CFTR mutations</td>
<td>HLA DR4/DR7 increased in ABPA/allergy/CF vs controls. CFTR mutation (1 R1162X; 1 N1303K, 2 AF508) seen in 4/11 ABPA vs 4% general population</td>
<td></td>
</tr>
<tr>
<td>Chauhan (2000)</td>
<td>ABPA 35 asthma/CF associated, 50 AF asthma</td>
<td>28</td>
<td>HLA alleles</td>
<td>HLA DR2/DR5 74.3% ABPA vs 36% AF asthma vs 34.7% controls. Specific HLA DR2 (DRB1*1503) allele almost exclusively seen in ABPA (20%)</td>
<td></td>
</tr>
<tr>
<td>Marchand (2001)</td>
<td>ABPA 142</td>
<td>21</td>
<td>CFTR mutations</td>
<td>CFTR mutations encountered in 6/21 (2AF508; 1 G542X; 1 R1162X; 1 R117H; 1771-G > A) ABPA vs 2/43 AF negative asthma vs 6/142 controls</td>
<td></td>
</tr>
<tr>
<td>Chauhan (2002)</td>
<td>ABPA 14, 12 asthma/2 CF, 12 AF asthma</td>
<td>34</td>
<td>T-cell receptors</td>
<td>86% of ABPA expressed Vβ13 gene indicating its role in susceptibility; Vβ1 seen in non-ABPA in directing its role resistance</td>
<td></td>
</tr>
<tr>
<td>Eaton (2002)</td>
<td>ABPA 31, AF asthma, 21 AF asthma</td>
<td>23</td>
<td>CFTR mutations</td>
<td>4/31 patients with ABPA showed CFTR mutations (AF508; 1 R1162H) vs 1 of 23, 21 and 34 AF asthma, AF asthma and controls, respectively</td>
<td></td>
</tr>
<tr>
<td>Saxena (2003)</td>
<td>ABPA 22</td>
<td>22</td>
<td>SP A polymorphisms</td>
<td>2 intronic polymorphism (SP-1 C1416T, T1492C) and 2 exonic polymorphism (SP-2 A1660G, A1649C) increased in ABPA vs controls. SP-2 G1649C and G1660C showed stronger association with ABPA and were associated with clinical markers of severity</td>
<td></td>
</tr>
<tr>
<td>Brouard (2005)</td>
<td>ABPA 27, AF19 colonisation</td>
<td>1L-10 polymorphisms</td>
<td>IL-10 genotype strain significantly high in ABPA whereas the same genotype significantly high in those with AF colonization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kurup (2005)</td>
<td>ABPA model</td>
<td>Numerous gene expression profile</td>
<td>Of the 12000 genes studied, 1300 genes showed enhanced expression and represent chemokine, cytokines, growth factor, signal transduction and transmembrane receptor genes as well as genes related to arginine metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madan (2005)</td>
<td>ABPA 11</td>
<td>20</td>
<td>SP A and MBL polymorphisms</td>
<td>Frequency of the ‘A’ allele of the intronic SP-1 G1011A of MBL significantly higher in ABPA than controls. ABPA patients with G1649C, A1660G alleles of SP-2A and G1011A of MBL showed significantly high IgE levels and eosinophilia</td>
<td></td>
</tr>
<tr>
<td>Kaur (2006)</td>
<td>ABPA 11, 49 asthma with allergic rhinitis</td>
<td>84</td>
<td>MBL polymorphisms</td>
<td>G1011A intronic SNP of MBL significantly increased in asthma and ABPA compared to controls but not in ABPA vs asthma</td>
<td></td>
</tr>
<tr>
<td>Knutsen (2006)</td>
<td>ABPA 14, 26 asthmatic</td>
<td>14</td>
<td>IL-4Rα polymorphisms</td>
<td>Any IL-4Rα polymorphisms seen in 38/40 (95%) ABPA vs 34/56 (61%) non-ABPA patients. The ile75val IL-4Rα SNP seen in 89% ABPA vs 54% non-ABPA. The ile75val IL-4Rα homozygous SNP seen in 43% ABPA vs 11% non-ABPA</td>
<td></td>
</tr>
<tr>
<td>Sambatakou (2006)</td>
<td>ABPA 9, SAFS 2, AFS 1</td>
<td>65</td>
<td>IL-10, IL-15, IFN-γ, TNF-α and TGF-β polymorphisms</td>
<td>ABPA associated with IL-10-1082G and G/G, TGF-β +869T allele. No association with IL-15, IFN-γ or TGF-β alleles</td>
<td></td>
</tr>
<tr>
<td>Vaid (2007)</td>
<td>ABPA 7</td>
<td>47</td>
<td>SPA-1, SPA-2 and MBL polymorphisms</td>
<td>Intronic polymorphism at T1492C and codon polymorphism at G1649C of SPA-2 in ABPA. T allele at position 868 of MBL seen with increased frequency in ABPA</td>
<td></td>
</tr>
<tr>
<td>Carvalho (2008)</td>
<td>ABPA 22, SAFS 14</td>
<td>80</td>
<td>TLR polymorphisms</td>
<td>Susceptibility to ABPA seen with allele T-1237 C (TLR9). However, importance not known whether it is due to eosinophil asthma or ABPA as all patients also had asthma</td>
<td></td>
</tr>
<tr>
<td>Lebecque (2011)</td>
<td>ABPA 18</td>
<td>18</td>
<td>> 100 CFTR mutations</td>
<td>12/18 ABPA patients showed CFTR mutation. No asthma control group</td>
<td></td>
</tr>
</tbody>
</table>

ABPA=Allergic bronchopulmonary aspergillosis, CF=Cystic fibrosis, AF=Aspergillus fumigatus, SAFS=Severe asthma with fungal sensitization, ASF=Allergic fungal sinusitis, HLA=Human leukocyte antigen, CFTR=CF transmembrane conductance regulator, SP=Surfactant protein, IL=Interleukin, MBL=Mannose binding lectin, IFN=Interferon, TNF=Tumour necrosis factor, TGF=Transforming growth factor, TLR=Toll-like receptor, vs=Versus, IgE=Immunoglobulin E, SNP=Single nucleotide polymorphism
The caveat associated with the above studies is not only that they have studied different aspects of pathogenetic susceptibility factors in ABPA but also the numbers of patients are quite small. However, one thing which is clear is that ABPA represents the classic example of genetic heterogeneity, wherein mutations in different genes can result in the same phenotype. Thus, it can be hypothesised that on a background of genetic susceptibility (Figure), inhaled conidia of *A. fumigatus* (and occasionally other *Aspergillus* species) are able to persist and germinate, leading to the growth of hyphae in mucus plugs. This leads to the release of *A. fumigatus* antigens and exoproteases that can compromise mucociliary clearance, stimulate and breach the airway epithelial barrier. This causes activation of the innate and adaptive immune system responses of the lung, including the epithelial and the alveolar production of several Th2 cytokines leading to total and *A. fumigatus* specific immunoglobulin E (IgE) synthesis, mast cell degranulation and promotion of a strong eosinophilic response.43-46

In conclusion, the ubiquitous presence of *A. fumigatus*, and its ability to infect the lung makes it an important fungal pathogen, which requires better mechanisms of diagnosis and effective treatment strategies. Recent advances in the understanding of the immune responses and developments in molecular biology have led to considerable insight in understanding of this entity. Further studies should characterise how genetic defects in CFTR, innate and adaptive immunity interact to predispose to ABPA. This understanding will enable the researchers/clinicians to develop agents that can modulate the immune response for the benefit of the patient.

Ritesh Agarwal
Member, Editorial Board
and
Assistant Professor
Department of Pulmonary Medicine
Postgraduate Institute of Medical Education and Research
Sector-12, Chandigarh-160 012, India

REFERENCES

37 Knutsen AP, Kariuki B, Consolino JD, Warrier MR. IL-4 alpha chain receptor (IL-4Ralpha) polymorphisms in allergic bronchopulmonary aspergillosis. Clin Mol Allergy 2006;4:3.

45 Hogaboam CM, Blease K, Schulz JM. Cytokines and chemokines in allergic bronchopulmonary aspergillosis (ABPA) and experimental Aspergillus-induced allergic airway or asthmatic disease. Front Biosci 2003;8:e147-56.

46 Kauffman HF. Immunopathogenesis of allergic bronchopulmonary aspergillosis and airway remodeling. Front Biosci 2003;8:e190-6.